
EXISTENCE OF INVARIANT SUBSPACES FOR UNBOUNDED
OPERATORS WITH MOMENTS

Abstract : In this text, we adapt some methods of A. Atzmon and G. Godefroy (see

[At] and [AtGo]) to prove the existence of invariant subspaces for unbounded operators ”with

moments” in real Banach spaces. In particular, we extend some results of E. Albrecht and

F.-H. Vasilescu (see [AlVa]).

0. PRELIMINARIES.

A well-known result of Scott Brown (see [Br]) asserts that each subnormal
operator has a proper invariant subspace. Recently, E. Albrecht and F.-H. Va-
silescu have studied the existence of nontrivial (quasi-)invariant subspaces for
subnormal families of unbounded operators having sufficiently rich domains, by
exploiting the techniques of Thomson and Trent (see [Th] and [Tr] respecti-
vely). The aim of this work is to generalize the results of E. Albrecht and F.-H.
Vasilescu, in the framework of real Banach spaces, applying the methods of A.
Atzmon and G. Godefroy (see [At] and [AtGo]).

We start with some definitions (see [AlVa]).
0.1 Definition : Let X be a Banach space and let T be a closed unbounded
operator with a dense domain D(T ) ⊂ X . Let L be a closed subspace of X . We
denote by :

D0(T,L) = D(T ) ∩ L.

The subspace L is said invariant under T if D0(T,L) is dense in L and we have :

T (D0(T,L)) ⊂ L.

Similarily, we say that closed linear space L is quasi-invariant under T if
D(T,L) is dense in the subspace L, where D(T,L) is given by the following
equality :

D(T,L) =
{

x ∈ D0(T,L);Tx ∈ L
}

.

As mentioned in [AlVa], every invariant subspace under T is quasi-invariant.
Moreover, this two notions are identical and coincide with the well-known notion
of invariant subspace in the bounded case. We note that there exist quasi-
invariant subspaces which are not invariant spaces, see example 3 of [AlVa].

We say that a multi-operator T = (Tj)j∈J (defined in X , J finite subset
of Z+) has an invariant (resp. quasi-invariant) subspace L if L is an invariant
(resp. quasi-invariant) subspace under each Tj , j ∈ J.

Let T be a densely defined closed operator in the real Banach space X . We
denote by D∞(T ) the intersection of the domains of all iterates of T .

Following A. Atzmon (see [At]), we say that an operator T is an operator with
(Hamburger or Stieltjes) moments in X if there exists a pair (x,y), x ∈ D∞(T )
and y ∈ X ∗, such that we have the following integral representation :

(0.1) 〈Tnx; y〉 =
∫

tndµ(t), ∀n ∈ Z+,

where µ is a positive measure on R (respectively R+) (where the support of µ
is not necessarily compact).
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For such an operator T , we define following subsets of the space X .

H(y,T ) =
{

x ∈ D∞(T )/∃ν ∈M(R) s.t. 〈Tnx; y〉 =
∫

R
tndν(t),∀n ∈ Z+

}
.

S(y,T ) =
{

x ∈ D∞(T )/∃ν ∈M(R+) s.t. 〈Tnx; y〉 =
∫ ∞

0

tndν(t),∀n ∈ Z+

}
.

The sets H(y,T ) and S(y,T ) be called be the Hamburger set, respectively
the Stieltjes set associated to the operator T and to the element y ∈ X ∗.

0.2 Remark : The Hamburger set H(y,T ) and the Stieltjes set S(y,T ) are
nonempty for each y ∈ X ∗ because 0 is included in each one. We can verify easily
that they are convex positive cones. Moreover, they are ”invariant” under T 2

and T, respectively. Indeed, D(T 2) and D(T ) both contain H(y,T ) and S(y,T ),
and we have :

(0.2) T 2(H(y,T )) ⊂ H(y,T ) and T (S(y,T )) ⊂ S(y,T ).

1. INVARIANT SUBSPACES FOR ONE UNBOUNDED OPERATOR.

In this section, all Banach spaces are assumed to be real, separable and
reflexive (as in [At]), if not otherwise specified.

We shall try to adapt the methods of A. Atzmon, who uses measures with
compact support. As we study unbounded operators, we are forced to consi-
der measures whose support is not necessarily compact. Some of the needed
ingredients already appear in the paper [AtGo].

Let H(y,T )
w

and S(y,T )
w

be the closures (in the weak topology) of the
Hamburger and Stieltjes sets, respectively, in the Banach space X .

1.1 Lemma : Let y be a nonnul element in X ∗. The sets H(y,T )
w

and S(y,T )
w

are strictly included in the Banach space X .

Proof : As y 6= 0, there exists an element x ∈ X such that 〈x,y〉 = −1.

Assume that S(y,T )
w

is equal to X . Therefore, there exists a sequence (zk)k in
S(y,T ) which converges weakly to x. In particular, we obtain :

0 ≤ µk(R+) = 〈zk,y〉 → 〈x,y〉 = −1,

where the (µk)k are the positive measures associated to the elements zk ∈
S(y,T ). Hence, S(y,T )

w
cannot be equal to X .

Similarily, we obtain that H(y,T )
w
6= X .

1.2 Remark : Assume that there exists a nonnull element f0 ∈ S(y,T ). Conse-
quently, the boundary ∂S(y,T )

w
contain a nonnull element too. Let z0 be one

of these elements. Then, we choose z1 ∈ X\S(y,T )
w

such that we have :

(1.1) 0 < ||z1 − z0|| <
||z0||

3
.

In particular, we have z1 6= 0.
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As S(y,T ) is a convex set, S(y,T )
w

is a convex positive closed cone included
in the Banach space X , which is reflexive. For this reason there exists a vector
u ∈ S(y,T )

w
such that distance between S(y,T )

w
and z1 can be written as

(1.2) d(z1,S(y,T )
w
) = d(z1,u).

An easy calculation shows that this vector is nonnul.
Obviously, we can make the same construction for the Hamburger set H(y,T ).

1.3 Proposition : Let T be an unbounded operator with dense domain in X .
Let also y ∈ ∩∞i=1D(T ∗i) ⊂ X ∗, y 6= 0. Then the positive convex cone S(y,T )
contains D∞(T ) ∩ ∂S(y,T )

w
.

Proof : Fix u ∈ S(y,T )
w
. There exists a sequence (xp)p in S(y,T ) such that

〈xp,φ〉 → 〈u,φ〉, ∀φ ∈ X ∗. Hence, there exists a sequence of Stieltjes measures
(νp)p with the properties :

(1.3) 〈Tnxp,y〉 =
∫ ∞

0

tndνp(t), ∀n,p ≥ 0.

It is well known that γ = (γi)i≥0 is a Stieltjes moments sequence if and only
if we have :

(1.4)
∑

i,j≥0

aiajγi+j ≥ 0 and
∑

i,j≥0

aiajγi+j+1 ≥ 0,

for every finite family in CN.
As xp ∈ S(y,T ) for all p ≥ 0, by the remark above we obtain :

(1.5)
∑

i,j≥0

aiaj〈T i+jxp,y〉 ≥ 0 and
∑

i,j≥0

aiaj〈T i+j+1xp,y〉 ≥ 0.

Moreover, as we have assumed that y ∈ ∩∞i=1D(T ∗i), the following linear
functional is continuous for all pairs of indices (i,j) :

(1.6) φ(∗) = 〈T i+j ∗ ,y〉 = 〈∗,T ∗(i+j)y〉 ∈ X ∗,

Consequently, we obtain the following convergence :

(1.7) 〈T axp,y〉 = 〈xp,T
∗ay〉 → 〈u,T ∗ay〉 = 〈T au,y〉,

for every positive integer a, because we have assumed that u ∈ D∞(T ). As in
the criterion for the Stieltjes moments, the sums are finite, and passing to the
limit, we obtain :

(1.8)
∑

i,j≥0

aiaj〈T i+ju,y〉 ≥ 0 and
∑

i,j≥0

aiaj〈T i+j+1u,y〉 ≥ 0.

This shows that (〈T au,y〉)a is a Stieltjes moments sequence, which allows us to
conclude that u ∈ S(y,T ).

Before giving a first generalization of Atzmon’s result, we need some technical
lemmas, concerning polynomials of degree two (see also [AtGo]).

3



Let j ∈ Z+ and k ∈ Z+ satisfying 2j − k ≤ 0. Then the function f defined
by

(1.9) f(s,t) = 1 + s(1 + t)j + s2(1 + t)k

is nonnegative on the half plane R× R+, as one can easily see.

1.4 Lemma : Let u be a nonnull vector in S(y,T ). Then for all s ∈ R, and for
every pair (j,k) ∈ Z+ × Z+ satisfying the condition 2j − k ≤ 0, the elements
u + s(I + T )ju + s2(I + T )ku are included in the positive cone S(y,T ).

Proof : As u is included in S(y,T ), it is included in particular in D∞(T ),
and there exists a positive measure µ with support included in R+, such that :

(1.10) 〈Tnu,y〉 =
∫ +∞

0

tndµ(t), ∀n ≥ 0.

It is obvious that u + s(I + T )ju + s2(I + T )ku is a element of the linear space
D∞(T ), which satisfies :
(1.11)

〈Tn(u + s(I + T )ju + s2(I + T )ku),y〉 =
∫ +∞

0

tnf(s,t)dµ(t) =
∫ +∞

0

tndµj,k,s(t),

where the positive measure µj,k,s is given by :

(1.12) dµj,k,s(t) =
(
1 + s(1 + t)j + s2(1 + t)k

)
dµ(t).

This measure is effectively positive, due to the preceding remark on the function
f(s,t), which is nonnegative on the half plane R× R+.

We now follow some ideas from [Si] and [At]. Take u an element of D∞(T )
and v ∈ X arbitrary. We define the functions Fj,k from R to R+, for every pair
(j,k) ∈ Z+ × Z+, by the formula

(1.13) Fj,k(s) = ||v − s(I + T )ju− s2(I + T )ku||.

1.5 Proposition : The functions Fj,k, (j,k) ∈ Z2
+ are differentiable at 0, and

we have the equality :
F ′

j,k(0) = −〈(I + T )ju,Φ0〉,

where Φ0 is the unique linear functional of X ∗ with ||Φ0|| = 1, satisfying
〈v,Φ0〉 = ||v||.

Proof : One can follow the lines of the proof given by G. Köthe (see [Ko], pp
347-350) where a similar proposition is proved (only for polynomials of degree
one). We omit the details.

For every family (ηα)α∈A of vectors, we denote by V ect(ηα)α∈A the linear
space spanned by this family. If it does not follow from the context, we will
specify if it is a real or a complex linear space.

1.6 Lemma : Let X be a Banach space (real or complex) and let T be an
unbounded operator in X . If there exists a linear functional φ ∈ X ∗ such that
〈(I + T )ju,φ〉 = 0 for every j ≥ 0, with u ∈ D∞(T ), then φ is in V ect{T ju}⊥.
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Proof : The assertion is obtained by an easy induction.

Theorem 1.7 below uses the notation from Remark 1.2.
1.7 Theorem : Let T be a closed operator with dense domain D(T ) in X .
Assume that T is an operator with Stieltjes moments for a pair of vectors (x,y) ∈
D∞(T )×D∞(T ∗). Moreover, assume that the distance d(z1,S(y,T )

w
) is attained

at an element u ∈ D∞(T ). Then T has a nontrivial quasi-invariant subspace.

Proof : Using Proposition 1.3 and Remark 1.2, the element u is nonnul and
included in S(y,T ). We can apply the Lemma 1.4 to the vector u to obtain that
all the vectors u+s(I+T )ju+s2(I+T )ku are in the cone S(y,T ), (j,k) ∈ Z+×Z+

satisfying the condition 2j − k ≤ 0. We define the functions Fj,k on R letting :

(1.14) Fj,k(s) = ||(z1 − u)− s(I + T )ju− s2(I + T )ku||.

As u + s(I + T )ju + s2(I + T )ku is in S(y,T ), we have :

(1.15) Fj,k(s) ≥ d(z1,S(y,T )
w
) = d(z1,u) = Fj,k(0).

Hence, the functions Fj,k have a global minimum in 0. Moreover, using Propo-
sition 1.5, these functions are differentiable and :

(1.16) F ′
j,k(0) = −〈(I + T )ju,Φ0〉,

where Φ0 is the unique linear functional of norm 1 in X ∗ satisfying 〈z1−u,Φ0〉 =
||z1 − u||. Therefore, we have the equalities :

(1.17) 〈(I + T )ju,Φ0〉 = 0, ∀j ≥ 0.

Finally, we use Lemma 1.6 to conclude that :

(1.18) 〈T ju,Φ0〉 = 0, ∀j ≥ 0.

Let Y = V ect{T ju, j ≥ 0}. The space Y is nontrivial because it contains u 6= 0
and is different from X because there exists a nonnull linear functional Φ0 in
its orthogonal. Moreover, we have :

D(T,Y ) =
{
x ∈ D(T ) ∩ Y such that Tx ∈ Y

}
⊃ V ect

{
T ju, j ≥ 0

}
.

Hence, Y is a nontrivial quasi-invariant subspace.

If we translate the preceding Theorem 1.7 in the bounded case, we obtain
the following Corollary :

1.8 Corollary : Let T be a bounded operator defined on X . Assume that T is
an operator with Stieltjes moments for a pair of vectors (x,y) ∈ X × X ∗. Then
T has a nontrivial invariant subspace.

Proof : If T is bounded, its domain D(T ) = X . Moreover, the distance from
a closed convex set to a point is attained at a vector of X which is in the domain
of T. So, the space Y of the preceding theorem is invariant (in the usual sense
for bounded operators), using the continuity of the operator T .

1.9 Remark : If we are in the bounded case, the measure is necessarily with
compact support included in [−ρ(T ),ρ(T )], (where ρ(T ) is the spectral radius
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of T ) as it is noticed in [AtGo]. So the previous corollary is not an extension of
their result, only a version of it.

2- COMPLEMENT ON THE UNBOUNDED CASE.

In Theorem 1.7, we have assumed that the distance between the closed
convex positive cone, which is always attained, is attained at an element u ∈
D∞(T ). We begin with a proposition which allows us to remove this condi-
tion. As a matter of fact, we just obtain conditions on the given operator T,
and moreover, which imply the existence of invariant subspaces rather than of
quasi-invariant ones.

2.1 Proposition : Let T be a closed operator with dense invariant domain
D(T ) ⊂ X . Assume that T is an operator with Stieltjes moments for a pair
(x,y) ∈ D∞(T ) × D∞(T ∗) and that the space V ect(T ∗ny)n≥0 is dense in X ∗.

Then each element u ∈ S(y,T )
w

is in D∞(T ).

Proof : Let (xm)m≥0 be a sequence of vectors in S(y,T ) ⊂ D∞(T ) weakly-
convergent to u ∈ S(y,T )

w
. So there exists a sequence (zm)m included in

V ect{xm,m ≥ 0} which converges strongly to u. This sequence is a subset of
D∞(T ) due to the properties on (xm)m≥0.

We begin to prove that the sequence (Tzm)m≥0 is a Cauchy one in X . Indeed,
we have (taking a strictly positive ε) :

||Tzn − Tzm|| = sup
φ∈X∗,||φ||≤1

〈Tzn − Tzm,φ〉

≤ ε
2 + |〈Tzn,p(T ∗)y〉 − 〈Tzm,p(T ∗)y〉|,

where p is a polynomial in one variable. Moreover, we know that :

〈Tzm,p(T ∗)y〉 → 〈u,T ∗p(T ∗)y〉.

Therefore, there exists an integer N0 such that, for all m,n ≥ N0, we have :

|〈Tzn,p(T ∗)y〉 − 〈Tzm,p(T ∗)y〉| ≤ ε

2
.

As we are in a Banach space, the Cauchy sequence converges to an element u′.
Consequently, the couple (zm,T zm) converges in the graph G(T ) of T to (u,u′).
Because we have assumed that T is a closed operator, we obtain that :

u ∈ D(T ) and Tu = u′.

Now, we have u′ ∈ S(y,T )
w

because (Tzm)m≥0 is a weakly-convergent sequence
to u′. We can verify this fact on the dense family (T ∗ny)n≥0 of X ∗. We repeat
the argument above one more time (applied to u′) to obtain that :

(u′,Tu′) = (u′,u′′) ∈ G(T ), which means u ∈ D(T 2).

And, step by step, we conclude that the element u is in D∞(T ).

2.2 Theorem : Let T be a closed operator with a dense invariant domain
D(T ) ⊂ X . Assume that T is an operator with Stieltjes moments for a couple
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(x,y) ∈ D∞(T ) × D∞(T ∗) and that the space V ect(T ∗ny)n≥0 is dense in X ∗.
Then T has a nontrivial invariant subspace in X .

Proof : We proceed as in the proof of Theorem 1.7. We denote by u a element
which minimalizes the distance between z1 and the positive convex cone S(y,T ).
Using the preceding Proposition 2.1, we know that u is in the linear space
D∞(T ). Then we can apply the Theorem 1.7. So Y = V ect{T ju, j ≥ 0} is a
nontrivial quasi-invariant subspace. We have to show that Y is also an invariant
subspace i.e. :

T
(
Y ∩ D(T )

)
⊂ Y.

Let z ∈ Y ∩ D(T ) : two cases may happen. First, if z can be written as p(T )u,
we have :

Tz = Tp(T )u ∈ Y.

In the other case, using the density of V ect
{
T ju, j ≥ 0

}
, there exists a se-

quence of polynomials (pn)n≥0 such that :

pn(T )u → z.

As in the previous proposition, we will show that (Tpn(T )u)n is a convergent
sequence. For ε > 0, we have :

||Tpn(T )u− Tpm(T )u|| = sup
φ∈X∗,||φ||≤1

〈Tpn(T )u− Tpm(T )u,φ〉

= sup
φ∈X∗,||φ||≤1

(〈Tpn(T )u,φ〉 − 〈Tpm(T )u,φ〉)

≤ ε
2 + |〈Tpn(T )u,q(T ∗)y〉 − 〈Tpm(T )u,q(T ∗)y〉|,

for a polynomial q in one variable. Moreover, we have 〈Tpn(T )u,q(T ∗)y〉 →
〈z,T ∗q(T ∗)y〉, which implies that there exists N0 such that ∀n,m ≥ N0 we
have :

||Tpn(T )u− Tpm(T )u|| ≤ ε.

Consequently, (Tpn(T )u)n is a Cauchy sequence in X . Let w be the limit in this
Banach space. Therefore, we obtain that :

G(T ) 3 (pn(T )u,Tpn(T )u) → (z,w),

where G(T ) is the graph of the operator T. As G(T ) is closed, we obtain that
w = T (z). For any integer n, Tpn(T )u ∈ Y, which is a closed subset of X . Hence
T (z) = w is also in the linear space Y.

Hence, Y is a closed nontrivial invariant subspace for the closed operator T.

2.3 Corollary : Let T be a closed operator with a dense invariant domain
D(T ) ⊂ X . Assume that T is an operator with Stieltjes moments for a pair
(x,y) ∈ D∞(T ) × D∞(T ∗). Then either T or T ∗ has a nontrivial invariant
subspace in X or X ∗.

Proof : It is a straightforward consequence of the preceding Theorem 2.2.
Indeed, if the family of linear functionals (T ∗ny)n≥0 is dense in X ∗ then using
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result 2.2, we obtain that T has a nontrivial invariant subspace in X . Else,
(T ∗ny)n≥0 is not dense then this linear space of functionals is a nontrivial quasi-
invariant subspace for T ∗ in X ∗. Let L be the closure of V ect

{
T ∗ny, n ≥ 0

}
.

As T is closed with dense domain, D(T ∗) is also dense and T ∗∗ = T. So we
can use the same argument as in the proof of Theorem 2.2 (we can assume that
V ect

{
Tnx, n ≥ 0

}
is dense in X ).

Application to real Hilbert spaces : Let X be a real Hilbert space (obviously
reflexive), and let T be an unbounded self-adjoint (and so closed) operator with
dense domain D(T ) which is invariant under T. Then we can use the functional
calculus of T which exists even if we are in the real case (see for example Chapter
VI of [Cr]). We obtain that T is an operator with Hamburger moments for each
couple (x,x) ∈ D∞(T )×D∞(T ). Indeed, we have :

〈Tnx,x〉 =
∫

R
tnd〈E(t)x,x〉, ∀x ∈ D∞(T ),

where E is the spectral measure associated to the self-adjoint operator T. As-
suming T 6= 0, we have either E(R+) 6= 0 or E(R−) 6= 0. If we assume that
E(R+) 6= 0, then we obtain for a chosen x :

〈TnE(R+)x,E(R+)x〉 =
∫

R+
tnd〈E(t)x+,x+〉, x+ = E(R+)x ∈ D∞(T ).

If E(R−) 6= 0, we may replace T by −T and reduce the problem to the pre-
vious one. In both cases, we deduce that T has a nontrivial invariant subspace.
Consequently, we obtain the following proposition.

2.4 Proposition : Let H be a real Hilbert space and let T be a self-adjoint
operator with invariant domain. Then T has a nontrivial invariant subspace.

We have dealt with the self-adjoint case, the natural following step is to
approach the subnormal operators. In the bounded case, we know that every
subnormal operator on a Hilbert space has a nontrivial invariant subspace, see
[Br]. We will show that, under natural conditions, this result remains true in the
unbounded case (if we are in a real Hilbert space). For definitions and criterions
of subnormal unbounded operators, see for example [StSz]. If we are in the
complex case, E. Albretch and F.-H. Vasilescu have shown that these operators
have nontrivial quasi-invariant subspaces (see Theorem 11 of [AlVa]).

2.5 Theorem : Let H be a real Hilbert space and T be a subnormal operator
with invariant domain D(T ) ⊂ H. Then T has a nontrivial invariant subspace.

Proof : Let N be a normal extension of T, defined in a real Hilbert space
K ⊃ H. For each vector x ∈ D∞(T ), we obtain that

〈Tnx+,x+〉 = 〈Nnx+,x+〉 =
∫

R
tnd〈E(t)x+,x+〉, x+ = E(R+)x ∈ D∞(T ),

where E is the spectral measure associated to the normal operator N . So, using
Corollary 2.3, there exists a closed nontrivial subspace M such that we have :

T
(
D(T ) ∩M

)
⊂M or T ∗

(
D(T ∗) ∩M

)
⊂M.

8



If the first case holds, we have proved the theorem. If not, for all y ∈M⊥∩D(T )
we have :

〈Ty,x〉 = 〈y,T ∗x〉 = 0, ∀x ∈ D(T ∗).

So we have Ty ∈ M⊥. Consequently, in this case M⊥ is an invariant subspace
(obviously nontrivial because M is non trivial) under the operator T.

3. THE MULTI-OPERATORIAL CASE.

Most of the results valid for one operator can be adapted to multi-operators.
The proofs are similar. We just have to assume that the couples (x,y) are now
in the set

(
D∞(T1)∩ · · · ∩D∞(Tl)

)
×

(
D∞(T ∗1 )∩ · · · ∩D∞(T ∗l )

)
. We only have

to change Proposition 1.3 because the criterion used to have a Stieltjes moment
sequence is valable for n = 1.

Let T = (T1, · · · ,Tl) be a family of unbounded operators. We denote by
S(y,T1, · · · ,Tl) the following set :{

x ∈ D∞(T )/∃ν ∈M(Rl) such that 〈Tαx; y〉 =
∫

tαdν(t), ∀α ∈ Zl
+

}
.

We replace Proposition 1.3 by the following one :
3.1 Proposition : Assume that y ∈

(
D∞(T ∗1 )∩ · · · ∩D∞(T ∗l )

)
. Then the posi-

tive convex cone S(y,T1, · · · ,Tl) is included in the set D∞(T1) ∩ · · · ∩ D∞(Tl) ∩
∂S(y,T1, · · · ,Tl)

w
.

Proof : Let u ∈ S(y,T1, · · · ,Tl)
w
. There exists a sequence (xp)p such that :

〈xp,φ〉 → 〈u,φ〉, ∀φ ∈ X ∗. This sequence (xp)p satisfies the property xp ∈
S(y,T1, · · · ,Tl) ⊂ D∞(T1)∩ · · · ∩D∞(Tl). So, there exists a sequence of Stieltjes
measures (νp)p satisfying :

〈Tαxp,y〉 =
∫

Rl
+

tαdνp(t), ∀α ∈ Zl
+, ∀p ≥ 0.

Let u ∈ S(y,T1, · · · ,Tl)
w
. There exists a sequence (xp)p such that : 〈xp,φ〉 →

〈u,φ〉, ∀φ ∈ X ∗.
A sequence γ = (γα)α≥0 is a multi-sequence of Stieltjes moments if and

only if the linear functional associated Lγ is nonnegative for all polynomials q
nonnegative on Rl

+ (see [Ha] and [Ha2]). If we denote by γα = 〈Tαu,y〉 and if
q(t) =

∑
β cβtβ , we obtain :

Lγ(q) =
∑
β≥0

cβγβ =
∑
β≥0

cβ〈T βu,y〉 =
∑
β≥0

cβ〈u,T ∗βy〉

= lim
p→∞

∑
β≥0

cβ〈xp,T
∗βy〉 = lim

p→∞

∫
Rl

+

q(t)dνp(t) ≥ 0.

Therefore, γ = (γα)α≥0 is a multi-sequence of Stieltjes moments, which allows
us to conclude that u ∈ S(y,T1, · · · ,Tl).

With the same techniques, we obtain the multi-variable results :
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3.2 Proposition : Let T = (T1, · · · ,Tl) be an unbounded multi-operator in
X , consisting of closed operators. We assume that there exists a dense linear
space D included in D(T1) ∩ · · · ∩ D(Tl), invariant under each Ti (i = 1, · · · ,l),
and that the multi-operator T = (T1, · · · ,Tl) has Stieltjes moments for a couple
(x,y) ∈

(
D∞(T1) ∩ · · · ∩ D∞(Tl)

)
×

(
D∞(T ∗1 ) ∩ · · · ∩ D∞(T ∗l )

)
. We also as-

sume that the linear functionals (T ∗αy)α are dense in X ∗. Then every element
u ∈ S(y,T1, · · · ,Tl)

w
belongs to D∞(T1) ∩ · · · ∩ D∞(Tl).

3.3 Theorem : Let T = (T1, · · · ,Tl) be an unbounded multi-operator in X ,
consisting of closed operators. We assume that there exists a dense linear space
D included in D∞(T1)∩ · · · ∩D∞(Tl) and invariant under each Ti (i = 1, · · · ,l).
Assume that the multi-operator T = (T1, · · · ,Tl) has Stieltjes moments for a
couple (x,y) ∈

(
D∞(T1) ∩ · · · ∩ D∞(Tl)

)
×

(
D∞(T ∗1 ) ∩ · · · ∩ D∞(T ∗l )

)
. At last,

we assume that the family of linear functionals (T ∗αy)α is dense in X ∗. Then,
the multi-operator T has a nontrivial invariant subspace.

3.4 Remarks : As in the preceding part, if we have a family of self-adjoint
operators (A1, · · · ,Al) in a real Hilbert space H (with D∞(A1, · · · ,Al) a dense
subspace of H), then there exists a joint nontrivial invariant subspace under the
operators Ai (i = 1, · · · ,l).

We can obtain a result similar to Theorem 2.5 in the multi-variable case,
whose proof is also similar.

3.6 Example : Let H be the real Hilbert space L2(Rm). We use the orthogonal
basis (the Chebyshev-Hermite functions) :

fP (x1, · · · ,xm) = e(x2
1+···+x2

m)/2 ∂|P |

∂xp1
1 · · · ∂xpm

m

(
e−(x2

1+···+x2
m)

)
, P ∈ Zm

+ .

We define the operators of creation Aj (j = 1, · · · ,m) by :
Aj(∗) = (xj −

∂

∂xj
)/
√

2

D(Aj) = V ect{fP , P ≥ 0}.

We can prove, using [De] or [De2], that A = (A1, · · · ,Am) is a commuting
subnormal multi-operator (see example of [De2]), satisfying :

Aj(fP ) =
−1√

2
fP+ej

, j = 1, · · · ,m,

where (ej)j is the canonical basis of Rm. Therefore, by the previous remark,
this multi-operator has an invariant nontrivial subspace.

We can prove this property also by finding directly the elements x and y in
Theorem 3.4. Take for example x = f0 and y =

∑
bP fP . Then we have :

〈AP f0,y〉 = (−1)|P |bP

√
π

m√2
|P |

P !.

So, if we chose for every P ≥ 0 :

bP =
(
(−
√

2)|P |
√

π
m(P + (1, · · · ,1))!

)−1

,
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we obtain first that y ∈ H, because :

||bP fP || ≤ C
m∏

j=1

j−j/2,

where C is a positive constant. Moreover, we have the following equalities (for
every P ∈ Zm

+ ) :

〈AP f0,y〉 =
1

(p1 + 1) · · · (pm + 1)
=

∫
[0,1]m

tP dλ(t),

where dλ(t) is the Lebesgue measure on the compact [0,1]m. Therefore, the
Stieltjes set H(y,(A1, · · · ,Am)) is nonempty. So using the multi-variable version
of Theorem 2.5, we obtain that the multi-operator A has a non trivial invariant
subset.

4. APPLICATION FOR COMPLEX HILBERT SPACES.

Our goal in this section is to extend results of E. Albrecht and F.-H. Vasi-
lescu on the existence of quasi-invariant subspaces (in special cases), proving a
complex version. A natural way to do this is to decompose each operator into
the real and a imaginary part.

4.1 Definition : Let T be a densely defined operator in a Hilbert space H. We
say that T has a Cartesian decomposition if there exist two symmetric operators
T1 and T2 satisfying D(T1) = D(T2) and T = T1 + iT2 (see for example [Ot] for
some comments on this definition).

We can easily see that a densely defined operator has a Cartesian decompo-
sition if and only if its domain satisfies the inclusion D(T ) ⊂ D(T ∗). And then
we obtain the relations :

T1 =
T + T ∗

2
and T2 =

T − T ∗

2i
.

For example, every densely defined subnormal T operator has a Cartesian
decomposition. Indeed, we have for all (x,y) ∈ D(T )×D(T ) :

φ(x) = 〈Tx,y〉 = 〈Nx,y〉 = 〈x,N∗y〉,

where N is a normal extension of T, because y ∈ D(T ) ⊂ D(N) = D(N∗). So,
φ is a linear and continuous functional on the domain D(T ), which means that
y ∈ D(T ∗). So we have D(T ) ⊂ D(T ∗).

If N is a normal operator, in the Cartesian decomposition we obtain two
self-adjoint operators A1 and A2. We define the real Hilbert space HR included
in H, associated to the orthonormal basis (ek)k, letting :

HR =
{

x ∈ H/〈x,ek〉 ∈ R, ∀k ≥ 0
}

.

Obviously, HR is a real Hilbert space with the scalar product of H. Even if the
operators A1 and A2 are self-adjoint, the real space is not necessarily invariant
under these two operators. But if this property is true, then we can define their
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restrictions to HR, which are operators (denoted by B1 and B2) in HR. Then,
we obtain for all x ∈ HR :

〈Bαx,x〉 = 〈Aαx,x〉 =
∫

R2
tαd〈E(t)x,x〉 =

∫
R2

tαdµx(t).

Up to a transformation of Ai in −Ai (as in the Remark 3.5), we obtain that the
pair A = (A1,A2) has a commun nontrivial invariant subspace M (a real one).
Letting F = M + iM, we obtain a nontrivial invariant subspace under N :

N(F) = A1(F) + iA2(F) ⊂ F .

The fact that normal operators have invariant subspaces can be easily seen
using the spectral measure of the operators. But the previous method can be
used for subnormal operators using the Cartesian decomposition.

We will say that an operator T, in a complex Hilbert space H, has the
property (R) if there exists an orthonormal basis (ei)i≥0 of H such that :

〈Tei,ej〉 ∈ R, ∀(i,j) ∈ Z2
+.

For example, if L2(Rm) is the complex Hilbert space, the creation multi-
operator A (of the example 3.6) has the property (R).

4.2 Theorem : Let (T1, · · · ,Tl) be a family of subnormal multi-operators in a
Hilbert space H (of dimension bigger than 1) with the property (R). Assume
that there exists a linear subspace D ⊂ D(T1) ∩ · · · ∩ D(Tl) included in H such
that we have Tj(D) ⊂ D, for all j = 1, · · · ,l. Then the family (T1, · · · ,Tl) has a
nontrivial invariant subspace.

Proof : Note first that the subnormality condition implies that TjTkx =
TkTjx for all x ∈ D and for all pair (j,k) ∈ {1, · · · ,l}2. So we can take without
ambiguity the powers of (T1, · · · ,Tl) on D. We can assume that D is dense,
otherwise the closure of this space is a nontrivial invariant subspace. We use the
Cartesian decomposition of each Tj letting Tj = S1,j + iS2,j . We can define the
restrictions of each Sk,j to the real Hilbert space HR because these operators
are symmetric. And using the functional calculus of a normal extension (Nj =
A1,j + iA2,j)j∈J we obtain for all x ∈ HR ∩ D :

〈Sαx,x〉 = 〈Aαx,x〉 =
∫

R2l

tαd〈E(t)x,x〉 =
∫

R2l

tαdµx(t).

With the same argument as before, we obtain a Stieltjes moments sequence
for the family of unbounded operators S = (Sk,j){1,2}×{1,···,l} (where we have
denote by A the family (Ak,j){1,2}×{1,···,l}). Hence, we conclude as above.

4.3 Remark : As we have noticed at the beginning, every invariant subspace
is also a quasi-invariant one. Therefore the preceding Theorem 4.2 can be seen
as a generalization of the Theorem 11 in [AlVa], where the authors have proved
the existence of nontrivial quasi-invariant subspaces, provided we assume the
condition (R).

5. ON THE ARENS ALGEBRAS Lω(µ).
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Let Ω be a locally compact Hausdorff space and let µ be a positive finite
Borel measure on Ω. We denote by Lω(µ) = ∩p≥1L

p(µ) as in [Ar] and [AlVa].
Associated with the family (||.||p)p≥1, we obtain a metrizable locally convex
topological vector space. Moreover (see [FlWl]), the dual space may be identified
with :

L1+(µ) =
⋃
p>1

Lp(µ).

The algebra Lω(µ) is reflexive satisfying for all p > 1 :

L∞(µ) ⊂ Lω(µ) ⊂ Lp(µ) ⊂ L1+(µ) ⊂ L1(µ).

We recall some well-known fact on these sets. Let A un a subalgebra of Lω(µ),
of dimension bigger than 2, containing the constants. We define by Ap(µ) the
closure of A in Lp(µ). Similarily, we denote by Aω(µ) the closure of A in Lω(µ)
which is a subalgebra of Lω(µ) satisfying :

Aω(µ) =
⋂
p≥1

Ap(µ)

For every a ∈ Aω(µ), we denote the operators Sa and Na by :

Sa

{
D(Sa) → A2(µ)

f → af
Na

{
D(Na) → L2(µ)

f → af

where D(Sa) and D(Na) are respectively the domain of Sa and Na given by {f ∈
A2(µ); af ∈ A2(µ)} and {f ∈ L2(µ); af ∈ L2(µ)}. So the family {Sa,a ∈ Aω(µ)}
is a subnormal family with normal extension {Na,a ∈ Aω(µ)}. In [AlVa], it is
proved that this family has a nontrivial quasi-invariant subspace, see Theorem
9. Using our methods, we can prove a stronger result in the real case. Indeed,
this family has a nontrivial invariant subspace :

Theorem : Let A be a subalgebra of the real Arens algebra Lω(µ) having di-
mension bigger than 2. Then the multiplication operators Sa, a ∈ Aω(µ), have
a proper invariant subspace in A2(µ).

If we are in the complex case, we have to assume that the multiplication
operators satisfy the property R for an orthonormal basis of L2(µ).
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