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Abstract. In this work, we study universal Dirichlet series introduced by F.

Bayart [3] and [4]. In particular we obtain estimation on growth of coefficients. We

can then compare several classes of universal Dirichlet series.

1 Introduction

Let f(s) =
∑

n≥1 ann
−s be a Dirichlet series and let σa(f) be its abscissa of

absolute convergence, defined by

σa(f) = inf

σ ∈ R ;
∑
n≥1

|an|n−σ converges

 .

We define also the abscissa of convergence σ(f) = inf{σ ∈ R ;
∑

n≥1 ann
−σ

converges }. We denote the p-th partial sum Sp(f) =
∑p

n=1 ann
−s. Let C+ be

the half-plane of complex numbers with strictly positive real part. We denote
by Da(C+) the set of Dirichlet series which are absolutely convergent on C+.
This space Da(C+), endowed with the topology given by the following family of
semi-norms ∣∣∣∣∣∣

∣∣∣∣∣∣
∑
n≥1

ann
−s

∣∣∣∣∣∣
∣∣∣∣∣∣
σ

=
∑
n≥1

|an|n−σ (σ > 0),

is a Fréchet space. In the following, we fix σ̃ = (σk)k≥0 to be a strictly decreasing
sequence of real numbers which converges to 0. Then, the distance associated
to the Fréchet space is defined by, for f and g in Da(C+),

dσ̃(f, g) =
∑
n≥0

1
2n

||f − g||σn

1 + ||f − g||σn

.

Definition 1.1 Let K be a compact set included in C. This set is admissible
for Dirichlet series if C \ K is connected, and if we can obtain the following
representation K = K1 ∪ . . . ∪Kd, where the Ki should be contained in discon-
nected strips Si = {z ∈ C ; ai ≤ <(z) ≤ bi} with breadth strictly less than 1/2
(bi − ai < 1/2).

We denote by C− the left half plane {s ∈ C ; <(s) < 0}. We can now express
the version of Mergelyan’s theorem for Dirichlet series included in Da(C+).

Theorem 1.2 [3] Let K ⊂ C− be an admissible compact set for Dirichlet se-
ries, let f be a Dirichlet series in Da(C+) and let g be a continuous function
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on K which is analytic in
◦
K. For every couple of fixed positive real numbers σ

and ε, there exists a Dirichlet polynomial h satisfying

sup
z∈K

|h(z)− g(z)| < ε and ||h− f ||σ < ε.

We define also the following sets Wa, Wd and W1 of universal Dirichlet series
from Da(C+). The sets Wa and Wd have been yet introduced in [3] and [9]
respectively. We recall them.

Definition 1.3 We denote by Wa the set of all Dirichlet series h ∈ Da(C+)
satisfying : for every admissible compact set K ⊂ C−, for every function g,

continuous on K and analytic in
◦
K, there exists a sequence of integers (λn)n≥0

such that we have
sup
z∈K

|Sλn
(h)(z)− g(z)| −→

n→+∞
0.

Definition 1.4 We denote by Wd the set of all Dirichlet series h ∈ Da(C+)
satisfying : for every admissible compact set K ⊂ C−, for every Dirichlet series
f in Da(C+) without constant term and for every function g, continuous on K

and analytic in
◦
K, there exists a sequence of integers (λn)n≥0 such that we have

sup
z∈K

|Sλn
(h)(z)− g(z)| −→

n→+∞
0

h(λn) −→
n→+∞

f in Da(C+).

Clearly we have the following inclusion Wd ⊂ Wa. It is well-known that Wd and
Wa are Gδ-dense sets (see [3] and [9]).

Definition 1.5 We denote by W1 the set of all Dirichlet series h ∈ Da(C+)
satisfying : for every admissible compact set K ⊂ C−, for every function g,

continuous on K and analytic in
◦
K, there exists a sequence of integers (λn)n≥0

such that we have
sup
z∈K

|Sλn
(h)(z)− g(z)| −→

n→+∞
0.

The set W1 differs from Wa by the fact that the intersection of the compact
sets K with the imaginary axis must be an empty set. Obviously using similar
methods W1 is also a Gδ-dense set and we have the following inclusions Wd ⊂
Wa ⊂ W1. These three sets are analogous of the set of universal Taylor series
defined in [8], [13], [12] respectively. For survey and similar results, we can also
refer to [10]. As in the analytic case [12], we obtain first estimates on the growth
of coefficients of universal Dirichlet series (in the sense of Wa). It is Theorem
2.2. In the second hand we prove a decomposition theorem with estimates on
the coefficients for all series of Da(C+).
Theorem Let f =

∑
n≥1

dnn
−s be a Dirichlet series in Da(C+). Then, there exist

g1 =
∑
n≥1

ann
−s and g2 =

∑
n≥1

bnn
−s in W1 such that f = g1 + g2 on C+ with

the condition

lim sup
n∈N∗

n|an| = lim sup
n∈N∗

n|bn| = lim sup
n∈N∗

n|dn|.
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This theorem is a Dirichlet version of theorem 5.1 from [12]. As a consequence,
we deduce the strict inclusion between W1 and Wa.
At last, in the universal set W1, a natural question is to know whether some of
universal Dirichlet series converge and moreover are continuous on the imaginary
axis. This property is true for analytic function on the unit disk, see [12]. To
prove this, A. Melas, V. Nestoridis and I. Papadoperakis study universality on
the Banach space A(D) of analytic function on D, continuous on the torus T. To
obtain such result for universal Dirichlet series in the section 4, we have choosen
the point of view of the Wiener-Dirichlet algebra. We prove then the existence
of universal Dirichlet series which are continuous on the imaginary axis.

2 Some properties of Wa and Wd.

In this section, we study the growth of coefficients of universal Dirichlet series
in Wa or Wd. Note that such series converge nowhere on the imaginary axis.
Taking as K a singleton {it0}, t0 ∈ R, and two different values, we see that
series diverge at every point it0. Hence its abscissas of convergence and absolute
convergence are both exactly equal to 0. We obtain a more precise result on the
asymptotic behaviour of the universal coefficients.

Lemma 2.1 Let
∞∑

n=1

ann
−s be a Dirichlet series in Wa. Let (εn)n∈N be a de-

creasing sequence such that

∞∑
n=2

εn

n log(n)
< +∞.

Then, we have
∞∑

n=2

|an|

e
√

εn log(n)
= +∞.

Proof. Let be δn = eεn for all integers. There exists n0 such that
∞∑

n=n0

δn
n log(n)

<

1
2
. We define the functions from iR which are 2iπ-periodic letting


Hn(it) =

n log(n)
δn

π for |t| < δn
n log(n)

,

Hn(it) = 0 for
δn

n log(n)
≤ |t| ≤ π.

We put f̂(m) =
1
2π

∫ π

−π

f(it)mitdt. An easy calculation gives

Ĥn(1) =
1
2π

∫ π

−π

Hn(it)dt = 1
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Ĥn(m) =
sin
(

δn
n log(n)

log(m)
)

δn
n log(n)

log(m)
, m 6= 1.

Let N ≥ n0 be an integer, we can approximate the Dirichlet polynomial 1 +
N−1∑
m=1

amm
−s by a subsequence of partial sums of f uniformly on the com-

pact set {it; t ∈ [− 1
2 ,

1
2 ]}. Therefore there exists an integer M > N such that∣∣∣∣∣1−

M∑
m=N

amm
−it

∣∣∣∣∣ < 1
2

for all t ∈ [− 1
2 ,

1
2 ]. Hence we have (< means the real

part)
1
2
≤ <

(
M∑

m=N

amm
−it

)
. (1)

We define the convolution product f(it) = Hn0 ∗ · · · ∗HM (it), where

h ∗ g(it) =
1
2π

∫ π

−π

h(ix)g(it− ix)dx.

Note that f is a non-negative 2iπ periodic function satisfying f(it) = 0 for
1
2 < t ≤ π. Hence, multiplying both members of (1) by f(it) and using an
integration, we obtain

1
2
≤

M∑
m=N

<
(
am

∫ π

−π

f(it)m−itdt

)
.

Using the parity of f and triangle inequality we have

1
2
≤

M∑
m=N

|am| × |f̂(m)|.

Moreover, we can calculate f̂(m)

f̂(m) =
M∏

n=n0

sin
(

δn
n log(n)

log(m)
)

δn
n log(n)

log(m)
.

As (δn)n∈N is a decreasing sequence and the series
∑
n≥2

δn
n log(n)

converges, we

must have lim
n→+∞

δn = 0. Therefore, there exists an integer N such that we

have the following two inequalities
δn0

n0 log(n0)
log(N) > e and δN < e. For every

m ∈ {N, . . . ,M}, we have

δn0

n0 log(n0)
log(m) ≥ δn0

n0 log(n0)
log(N) > e and

δm
m log(m)

log(m) < δm ≤ δN < e.
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Then there exists an integer k ∈ {n0, · · · ,m− 1} such that

δk
k log(k)

log(m) ≥ e and
δk+1

(k + 1) log(k + 1)
log(m) < e.

We obtain also, because the sequence δn is decreasing,

|f̂(m)| ≤
k∏

n=n0

n log(n)
δn log(m)

≤
( k log(k)
δk log(m)

)k+1−n0

≤
(

1
e

)k+1−n0

.

Moreover (k + 1)2 ≥ (k + 1) log(k + 1) >
δk+1

e
log(m) ≥ εm log(m) implies

k + 1 >
√
εm log(m). We obtain

M∑
m=N

|am|
en0

e
√

εm log(m)
≥ 1

2
.

Since this holds for infinitely many pairs (N,M), we have the conclusion. �

Theorem 2.2 Let
∞∑

n=1

ann
−s be a Dirichlet series in Wa. Let (bn)n∈N be a

decreasing sequence such that
∞∑

n=2

bn
n log(n)

< +∞. Then, we have

lim sup
n∈N∗

n|an|

e
√

bn log(n)
= +∞.

Proof. Assume that there exists a real numberM such that |an| ≤
M

n
e
√

bn log(n)

for all n ≥ 1 integer. Let wn be max(bn,
1√

log(n)
) and let be εn = (

√
wn +

√
bn)2. Note that the sequence (εn)n∈N is decreasing. Moreover the series∑

n≥2

εn

n log(n)
converges due to the hypothesis on the sequence (bn)n∈N and the

Bertrand criterion. So, applying Lemma 2.1, we obtain

∞∑
n=1

|an|

e
√

εn log(n)
= +∞. (2)

But we have for every positive integer A

A∑
n=1

|an|

e
√

εn log(n)
≤M

A∑
n=1

1
n

1

e
√

εn log(n)−
√

bn log(n)
= M

A∑
n=1

1
n

1

e
√

wn log(n)
.

Using inequality wn ≥ 1/
√

log(n), we deduce

A∑
n=1

|an|

e
√

εn log(n)
≤M

A∑
n=1

1
n

1

e

q√
log(n)

.
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But the series
∑
n≥1

1
n

1

e

q√
log(n)

converges which contradicts the equality (2). As

a consequence, we have

lim sup
n∈N∗

n|an|

e
√

bn log(n)
= +∞.

�

Corollary 2.3 Let
∞∑

n=1

ann
−s be a Dirichlet series in Wa. Then, we have, for

every integer k,

lim sup
n∈N∗

n|an|
(log(n))k

= +∞.

Proof. Let (bn)n∈N be the sequence defined by

∀n ≥ 2, bn =
k2(log(log(n)))2

log(n)
.

This sequence is decreasing (for n sufficiently large) and the series
∞∑

n=2

bn
n log(n)

converges. Using Theorem 2.2, we deduce that

lim sup
n≥2

n|an|

e
√

k2(log(log(n)))2
= lim sup

n≥2

n|an|
log(n)k

= +∞

�

Remark 2.4 For the inverse inequality, we know by construction that it is
possible to build universal Dirichlet series

∑
j≥1

ajj
−s satisfying aj = o(j−r), for

any r < 1 (see [3]). Hence, contrarily to the analytic case [12], Wa ∩ H2 6= ∅
where H2 is the analogous of H2(D) for Dirichlet series, see for instance [2].

Moreover using ideas of J.P. Kahane, we have the following proposition (see [13]
Proposition 3.2).

Proposition 2.5 Let f be a Dirichlet series in Da(C+). Then, there exist g1
and g2 in Wd such that f = g1 + g2.

Proof. We use a translation homeomorphism Tf : Da(C+) → Da(C+) defined
by Tf (h) = f − h. As Wd is a dense Gδ set, its image by Tf is also a dense Gδ

set. Using Baire’s theorem, Wd ∩ [f − Wd] is no void. Let g1 be an element
of this intersection. It follows that g1 ∈ Wd and g1 = f − g2 for an element
g2 ∈ Wd. �

As for the set Wa [3], there exists a relation between the set Wd and the
notion of universality in the sense of Menchoff. We donot repeat the proof, it
suffices to follow Proposition 3.1 of [13].
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Proposition 2.6 Let be S =
∑
n≥1

ann
−s ∈ Wd and let g and h be two measurable

functions from R into [−∞; +∞]. Then there exists a subsequence Skm
of the

partial sums of S such that

<(Skm
(it)) → g(t) and =(Skm

(it)) → h(t),

almost everywhere on R.

3 Some properties of W1.

We recall the definition of this set.

Definition 3.1 We denote by W1 the set of all Dirichlet series h ∈ Da(C+)
satisfying : for every admissible compact set K ⊂ C−, for every function g,

continuous on K and analytic in
◦
K, there exists a sequence of integers (λn)n≥0

such that
sup
z∈K

|Sλn
(h)(z)− g(z)| −→

n→+∞
0.

As mentionned in the introduction, W1 is a Gδ-dense set in Da(C+). The proof
is similar of the case Wd (see [9] or remark on theorem 6 [3]). Moreover note
that such series have abscissa of convergence and absolute convergence exactly
equal to 0. To see that, it suffices to take as K a singleton {z0}, with <(z0) < 0.
Nevertheless what happens on imaginary axis ?

Notation 3.2 In the following, we denote the set of Dirichlet polynomials with
coefficients in Q+ iQ by the sequence (fj)j∈N. Moreover there exists a sequence
of admissible compact sets Kρ satisfying for each admissible (for Dirichlet series)
compact set K ⊂ C−, there exists a nonnegative integer ρ0 such that K ⊂ Kρ0

[9]. We denote also by ||.||ρ the supremum norm on Kρ.

At last we put for Dirichlet polynomial P (s) =
n0∑

n=1

ann
−s the degree deg(P ) =

n0 (an0 6= 0).

The proposition 2.5 is also true for the sets W1. Here we give another version
of this proposition with some more conditions on the growth of coefficients.
Before this, we need a more precise version of Mergelyan’s Theorem for Dirichlet
series.

Lemma 3.3 Let K be admissible for Dirichlet series compact set included in
C−. Let also g be a continuous function on K and analytic in the interior of
K. For every pair ε, σ of strictly positive real numbers, there exists a Dirichlet
polynomial h(s) =

∑
n≥1

hnn
−s satisfying


sup
z∈K

|h(z)− g(z)| < ε

||h||σ < ε
n|hn| < ε.
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Proof. We use the notations of Lemma 2 from [3] with the special case f =
0 ∈ Da(C+). We write K = K1∪· · ·∪Kd, then there exists a d-tuple of positive
real numbers σ1 < · · · < σd such that the following Dirichlet polynomial h

h(s) =
d∑

l=1

ml∑
j=nl+1

b
(l)
j j−σlj−s =

∞∑
j=n1+1

hjj
−s

satisfies sup
z∈K

|h(z)− g(z)| < ε and ||h||σ < ε. The choice of n1 is arbitrary (due

to [1]). Moreover, from result of [1], the modulus of the complex numbers b(l)j

are upper bounded by 1. Therefore, we obtain for all j ∈ N∗

|jhj | ≤ j|b(l)j j−σl | ≤ j−σ1+1 ≤ n−σ1+1
1 .

We just have to choose an integer n1 satisfying n−σ1+1
1 < ε to complete the

proof which is possible because the compact set doesnot intersect the imaginary
axis. We can use a translation of σ1 > 1 such that the first part K1 of the
compact set satisfies σ1 +K1 ⊂ {s ∈ C; 1

2 < <(s) < 1}. �

Remark 3.4 Note that we use the condition K ⊂ C− to obtain a control on
the n|hn| appearing in h(s) (from the previous lemma), which isnot possible in
the Wa and Wd cases.

Corollary 3.5 Let K be an admissible, for Dirichlet series, compact set in-
cluded in C−. Let also g be a continuous function on K and analytic in the
interior of K. For every pair ε, σ of strictly positive real numbers and for every
strictly positive integer λ, there exists a Dirichlet polynomial h(s) =

∑
n≥1

hnn
−s

satisfying 
sup
s∈K

|g(s)− λ−sh(s)| < ε

||λ−sh(s)||σ < ε
nλ|hn| < ε.

Proof. Using the notations of Lemma 3.3, for every ε1 there exists a Dirichlet
polynomial h such that sup

s∈K
|g(s)λs − h(s)| < ε1, ||h||σ < ε1 and n|hn| < ε1.

Therefore, we have(
inf
s∈K

|λs|
)(

sup
s∈K

|g(s)− λ−sh(s)|
)
< ε1.

We just have to choose ε1 such that we have max

 ε1
inf
s∈K

|λs|
;λε1

 < ε. �

We can now use main ideas from [12] to obtain the following result.

Theorem 3.6 Let f =
∑
n≥1

dnn
−s be a Dirichlet series in Da(C+). There exist

g1 =
∑
n≥1

ann
−s and g2 =

∑
n≥1

bnn
−s in W1 such that f = g1 + g2 on C+ with

the condition

lim sup
n∈N

n|an| = lim sup
n∈N

n|bn| = lim sup
n∈N

n|dn|.
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Proof. First, we study the case lim sup
n∈N

n|dn| = +∞. Using Proposition 2.5,

there exist g1 and g2 in Wa ⊂ W1 satisfying f = g1 +g2. The conclusion is given
by Corollary 2.3.

Case lim sup
n∈N

n|dn| < +∞ : we have a countable family of pair (Kρi , fji).

Let be λ1 = 1, then using Corollary 3.5, there exists Dirichlet polynomial
P1(s) =

∑
n≥1

p1,nn
−s such that ||fj1(s) − λ−s

1 P1(s)||ρ1 < 1, ||λ−s
1 P1(s)||σ1 < 1

and nλ1|p1,n| < 1 (for every n ∈ N). Let be µ1 > λ1 + deg(P1) ≥ λ1 such
that lim sup

n∈N
n|dn| −max {l|dl|;µ1 > l > λ1 + deg(P1)} < 1. Then, we define the

Dirichlet polynomial R1 letting

R1(s) =
µ1−1∑
n=λ1

dnn
−s − λ−s

1 P1(s).

Using Corollary 3.5, there exists a Dirichlet polynomial Q1(s) =
∑
n≥1

q1,nn
−s

satisfying nµ1|q1,n| < 1 (for every n ∈ N),

||Q1||σ1 < 1 and ||fj1(s)−R1(s)− µ−s
1 Q1(s)||ρ1 < 1.

Let λ2 be integer satisfying λ2 > µ1 + deg(Q1) ≥ µ1 > λ1 and lim sup
n∈N

n|dn| −

max {l|dl|;λ2 > l > µ1 + deg(Q1)} < 1 and we define Dirichlet polynomial F1

F1(s) =
λ2−1∑
n=µ1

dnn
−s − µ−s

1 Q1(s).

We construct step by step the sequences λ̃ = (λk)k≥1 and µ̃ = (µk)k≥1 . Assume
that we have

1 = λ1 < µ1 < λ2 < µ2 < · · · < λk−1 < µk−1 < λk

and that the polynomials Pi, Qi, Ri and Fi are constructed for i = 1, . . . , k− 1.
Using Corollary 3.5, there exists a Dirichlet polynomial Pk(s) =

∑
n≥1

pk,nn
−s

such that ||λ−s
k Pk(s)||σk

≤ 1
k2
, nλk|pk,n| <

1
k2

(for every n ∈ N) and

||fjk
(s)−

k−1∑
j=1

(
λ−s

j Pj(s) + Fj(s)
)
− λ−s

k Pk(s)||ρk
<

1
k2
.

Let be µk > λk + deg(Pk) such that

lim sup
n∈N

n|dn| −max {l|dl|;µk > l > λk + deg(Pk)} < 1
k2

and let Rk be

Rk(s) =
µk−1∑
n=λk

dnn
−s − λ−s

k Rk(s).
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Then, by Corollary 3.5, there exists a Dirichlet polynomial Qk(s) =
∑
n≥1

qk,nn
−s

satisfying ||Qk||σk
<

1
k2
, nµk|qk,n| <

1
k2

(for every n ∈ N) and

||fjk
(s)−

k−1∑
j=1

(
µ−s

j Qj(s) +Rj(s)
)
−Rk(s)− µ−s

k Qk(s)||ρk
<

1
k2
.

Let λk+1 be an integer satisfying λk+1 > µk + deg(Qk) ≥ µk > λk and

lim sup
n∈N

n|dn| −max {l|dl|;λk+1 > l > µk + deg(Qk)} < 1
k2
. We set

Fk(s) =
λk+1−1∑
n=µk

dnn
−s − µ−s

k Qk(s).

Since ||λ−s
k Pk(s)||σk

<
1
k2

and ||µ−s
k Qk(s)||σk

<
1
k2
, the two Dirichlets series∑

k≥1

λ−s
k Pk(s) and

∑
k≥1

µ−s
k Qk(s) are both in Da(C+) (terms with index n appear

only once, moreover the sequence σ̃ is decreasing, therefore the associed semi-
norms increases). As the Dirichlet series f is absolutly convergent on C+, we
obtain the same property for the following one (disjoint sums)

∞∑
k=1

λk+1−1∑
n=µk

dnn
−s.

Therefore the Dirichlet series

∑
k≥1

λ−s
k Pk(s) +

∞∑
k=1

λk+1−1∑
n=µk

dnn
−s −

∑
k≥1

µ−s
k Qk(s) =

∑
k≥1

(
λ−s

k Pk(s) + Fk(s)
)

is an element of Da(C+). We denote this series by
∑
k≥1

ann
−s. For N = λk +

deg(Pk), we have

N∑
n=1

ann
−s = λ−s

1 P1(s) + F1(s) + · · ·+ λ−s
k−1Pk−1(s) + Fk−1(s) + λ−s

k Pk(s).

Similarly, we define a second Dirichlet series from Da(C+)

−
∑
k≥1

λ−s
k Pk(s) +

∞∑
k=1

µk−1∑
n=λk

dnn
−s +

∑
k≥1

µ−s
k Qk(s) =

∑
k≥1

(
Rk(s) + µ−s

k Qk(s)
)
,

and we denote this series
∑
n≥1

bnn
−s. By construction, we have the relation

∀n ≥ 1 dn = an + bn.
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Moreover by Corollary 3.5, we know that all the coefficients which appear in the
decomposition of λ−s

k Pk(s) =
∑
n≥1

pk,n(λkn)−s and µ−s
k Qk(s) =

∑
n≥1

qk,n(µkn)−s

(denoted by (rk,n) and (sk,n) respectively) satisfy

λkn|rk,λkn| = λkn|pk,n| ≤
1
k2

and
µkn|sk,µkn| = µkn|qk,n| ≤

1
k2
.

Hence, the coefficients of the series
∑
k≥1

λ−s
k Pk(s) −

∑
k≥1

µ−s
k Qk(s) (denoted by

(tn)) satisfy n|tn| → 0. Therefore, we have the following estimates

lim sup
n∈N

n|an| ≤ lim sup
n∈N

n|dn| and lim sup
n∈N

n|bn| ≤ lim sup
n∈N

n|dn|.

In the second hand, for l satisfying µk + deg(Qk) < l < λk+1, we have dl = al

and
lim sup

n∈N
n|dn| −max {l|dl|;µk + deg(Qk) < l < λk+1} <

1
k2
.

As an easy consequence, we have lim sup
n∈N

n|dn| = lim sup
n∈N

n|an|. Similarly we

have the second equality lim sup
n∈N

n|dn| = lim sup
n∈N

n|bn|. To conclude the proof,

we have to prove that the two elements
∑
n≥1

ann
−s and

∑
n≥1

bnn
−s are both in

W1. Let K be an admissible compact set in C− and h be a continuous function
on K, analytic inside the interior of K. For every ε > 0 and v ∈ N, we want to
find N ≥ v such that

sup
s∈K

∣∣∣∣∣h(s)−
N∑

n=1

ann
−s

∣∣∣∣∣ < ε.

There exists a sequence fλ (λ = 1, 2, . . .) such that

sup
s∈K

|h(s)− fλ| <
ε

2
.

Moreover, there exists a sequence (ρp)p≥0 such that K ⊂ Kρp
and we can

consider the set
{
(Kρ, fλ + q); q ∈ Q; 0 < q < ε

4

}
to conclude as in Proposition

5.5 [12] �

Corollary 3.7 We have the strict inclusion Wa  W1.

Proof. It suffices to apply Theorem 3.6 with dn =
1
n
. Corollary 2.3 implies

that g1 and g2 cannot be in Wa. �

In the universal set W1, a natural problem is the existence of universal series
which converge and moreover are continuous on the imaginary axis. In case of
Taylor series this existence is proved by the study of universality on the Banach
space A(D) of analytic function on D, continuous on the torus T [12]. In the
next section we give also in the Dirichlet case a positive answer introducing
universal series in the Wiener-Dirichlet algebra.
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4 Universality in the Wiener-Dirichlet algebra.

4.1 Preliminary results.

The classical Wiener algebra of absolutely convergent Taylor series in one vari-

able is the set of functions f(z) =
+∞∑
n=0

anz
n such that

+∞∑
n=0

|an| < +∞.

Similarly, we can define Wiener-Dirichlet algebra, denoted in the following by

Dw. A Dirichlet series f(s) =
∑
n≥1

ann
−s is in this algebra if ||f || =

+∞∑
n=1

|an| <

+∞. Endowed with this norm, Dw is obviously a Banach algebra. These two
algebras are not completely similar. In effect, it is well-known that the spectrum
of the Wiener algebra is D, the closed unit disk. For the Wiener-Dirichlet
algebra, using the classical Bohr point of view [5], we can prove that its spectrum
is D∞. At last, we can easily remark that this Wiener-Dirichlet algebra is a
subset of Da(C+).

Definition 4.1 We denote by Uwd the set of all Dirichlet series h ∈ Dw sat-
isfying : for every admissible compact set K ⊂ C− and for every function g,

continuous on K and analytic in
◦
K, there exists a sequence of integers (λn)n≥0

such that we have
sup
z∈K

|Sλn
(h)(z)− g(z)| −→

n→+∞
0.

After giving a version of Mergelyan’s theorem, we give relations between the
set Uwd and subsets of Dw realising the given estimations with Dirichlet poly-
nomials. In the second hand, we prove that these subsets are opened and that
their union is dense. We conclude using category type arguments. The methods
are now classic to obtain analogous results (see [13], [6] or [8]) in the spaces of
analytic functions.

As a consequence of main result, we obtain information on the universal set
W1 defined below. Moreover, we precise the strict inclusion Wa  W1. So let us
begin with a version of Mergelyan’s Theorem for the Wiener-Dirichlet algebra.

Proposition 4.2 Let K be admissible for Dirichlet series compact set included
in C−. Let also g be a continuous function on K and analytic in the interior of
K. Let also be f ∈ Dw. Then, for every strictly positive number ε, there exists
a Dirichlet polynomial h(s) =

∑
n≥1

hnn
−s satisfying


sup
s∈K

|h(s)− g(s)| < ε

||h− f || < ε.

Proof. We use the notations of Lemma 2 from [3] with the special case f ∈ Dw.
We write K = K1 ∪ · · · ∪ Kd, with Ki ⊂ {s ∈ C; ai ≤ <(s) ≤ bi}, where
0 > b1 ≥ a1 > b2 . . . bd ≥ ad and bi − ai <

1
2 . We will use d-times the Bagchi’s

result. We approximate simultaneously f(s) =
+∞∑
n=1

ann
−s, and g on K1. Let

12



σ1 > 1 such that K1 + σ1 ⊂ {s ∈ C; 1
2 < <(s) < 1}. Let be n1 ∈ N such that

∑
n≥n1+1

1
nσ1

<
ε

2
.

sup
s∈K1

∣∣∣∣∣f(s)−
n1∑

n=1

ann
−s

∣∣∣∣∣ < ε

2
.

Then, we follow the construction of F. Bayart for K2 ∪ · · · ∪ Kd. Hence, we
obtain a Dirichlet polynomial

h(s) =
n1∑

n=1

ann
−s +

d∑
l=1

ml∑
n=nl+1

b(l)n n−σln−s =
∞∑

n=1

hnn
−s.

And, let us prove that h satifies the wanted inequalities. Indeed, we have

||h− f || ≤ ε

2
+

d∑
l=1

ml∑
n=nl+1

|b(l)n |
nσl

≤ ε

2
+

+∞∑
n=n1+1

1
nσ1

≤ ε.

The second inequelity follows from Lemma 2 of [3]. �

Remark 4.3 In this version of the Mergelyan’s Theorem, we donot allow that
the compact sets have a nonempty intersection with the imaginary axis. This
restriction allow us to take σ = 0 in the version of F. Bayart. In effect, we need

to have σ1 > 1 to obtain a convergent series
+∞∑
j=1

j−σ1 (see Lemma 3.3).

In the following, we use notations 3.2. We have easily the following lemma.

Lemma 4.4 The family of Dirichlet polynomials (fj)j∈N is a dense set of Dw

and for the topology of the uniform (on every compact set) convergence.

Definition 4.5 According to the preceeding definitions, for all positive integers
ρ, j, n, s we define the sets Ow(ρ, j, s, n) ⊂ Dw by

Ow(ρ, j, s, n) =

{
g ∈ Dw such that sup

z∈Kρ

|Sn(g)(z)− fj(z)| <
1
s

}
.

With these sets we have a complete representation of Uwd.

Lemma 4.6 We have the following equality

Uwd =
+∞⋂
ρ=1

+∞⋂
j=0

+∞⋂
s=1

+∞⋃
n=1

Ow(ρ, j, s, n).

Proof. Let g be a Dirichlet series Dw of the righthand-side set. Let K ⊂ C−
be an admissible compact set for Dirichlet series and Φ : K → C be continuous
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function on K and analytic in
◦
K . For all ε > 0, we just have to find an integer

n0 ∈ N such that we have

sup
z∈K

|Sn0(g)(z)− Φ(z)| < ε.

Using Proposition 4.2, there exists a Dirichlet polynomial p satisfying

sup
z∈K

|p(z)− Φ(z)| < ε

2
and ||p− h|| < ε

2
.

The inequalities allow us to conclude. The inverse inclusion is obvious. �

4.2 Main results.

We prove first that each set
⋃
n≥1

Ow(ρ, j, s, n) is opened. Obviously, we just have

to prove that Ow(ρ, j, s, n) is opened. Then we can conclude on the universality
of the set Uwd.

Proposition 4.7 For all j, s, n and ρ positive integers, the subsets Ow(ρ, j, s, n)
are opened in Dw.

Proof. We denote by M the lower boundary of the real parts of complex num-
bers included inKρ. Let g(z) =

∑
j≥1 gjj

−z be a Dirichlet series inOw(ρ, j, s, n),
which means that we have

sup
z∈Kρ

|Sn(g)(z)− fj(z)| <
1
s
.

Let ε1 be the following stricly positive real number :

ε1 = nM

(
1
s
− sup

z∈Kρ

|Sn(g)(z)− fj(z)|

)
> 0.

Let h =
∑

j≥1 hjj
−z be an element in Dw such that ||h− g|| ≤ ε1. Now, we can

overestimate |Sn(h)(z)− fj(z)|. One has for z ∈ Kρ

|Sn(h)(z)− fj(z)| ≤ |Sn(h− g)(z)|+ |Sn(g)(z)− fj(z)|

≤ |Sn(h− g)(z)|+ sup
z∈Kρ

|Sn(g)(z)− fj(z)|

Afterwards, if we denote Sn(h− g)(z) =
n∑

j=1

(hj − gj)j−z, we have

|Sn(h− g)(z)| ≤
n∑

j=1

|hj − gj |n−M ≤ n−M ||h− g||.

Consequently, one has for z ∈ Kρ

|Sn(h)(z)− fj(z)| ≤ n−M ||h− g||+ sup
z∈Kρ

|Sn(g)(z)− fj(z)|

≤ n−Mε1 + sup
z∈Kρ

|Sn(g)(z)− fj(z)| <
1
s
.

Therefore, the set Ow(ρ, j, s, n) is open. �
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Theorem 4.8 With previous notations, for all j, ρ and s integers, the sets⋃
n≥0

Ow(ρ, j, s, n) are dense subsets Dw.

Proof. Let d ∈ Dw be written d(z) =
+∞∑
j=1

ajj
−z. We want to obtain a sequence

of Dirichlet polynomials which converges to d. Let be ε ∈]0; 1
2s [. We denote by

dr(z) the partial sum
r∑

j=1

ajj
−z and we choose r such that ||d−dr|| < ε. Now, we

approximate the Dirichlet polynomial dr with an element in
∞⋃

n=0

Ow(ρ, j, s, n),

with an index j in N. According to Proposition 4.2, for all m > 0, there exists
a Dirichlet polynomial pm satisfying the following inequalities

sup
z∈Kρ

|pm(z)− fj(z)| <
1
m

and ||pm − dr|| <
1
m
.

For all m ≥ s, the Dirichlet polynomials are in
∞⋃

n=0

Ow(ρ, j, s, n) and we have

||pm − d|| ≤ ε+
1
m
.

The conclusion follows. �

Theorem 4.9 The set Uwd is a Gδ-dense set included in Dw.

Proof. Lemma 4.6 implies that Uwd is a denombrable intersection of dense
opened sets of Dw. Hence, the result is a direct consequence of the Baire’s
theorem. �

As a straightfoward consequence of the preceeding theorem, we obtain the
following explicit result of approximation.

Corollary 4.10 Let f be in Dw. Then, for all ε > 0 and ψ, continuous on K

(admissible compact set of C−) and analytic in
◦
K, there exists a sequence of

integers (λn)n≥0 and a Dirichlet series h ∈ Dw satisfying
||h− f || < ε

sup
z∈K

|Sλn
(h)(z)− ψ(z)| −→

n→+∞
0

Remark 4.11 The universal set Uwd is dense in Dw. Obviously, the property
is also true in Da(C+). Every Dirichlet series of Uwd converges on the imaginary
axis and is continuous on this set. Moreover we have obviously Uwd ⊂ W1.

Corollary 4.12 We have the inclusion Wa ⊂ (W1 ∩ Uc
wd) .

Proof. Every function from Wa converges nowhere on the imaginary axis.
Therefore we have Wa ∩ Uwd = ∅. �
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